Tuning the magnetic properties of Co-ferrite nanoparticles through the 1,2-hexadecanediol concentration in the reaction mixture.

نویسندگان

  • Carlos Moya
  • María del Puerto Morales
  • Xavier Batlle
  • Amílcar Labarta
چکیده

This work reports on the effect of the 1,2-hexadecanediol content on the structural and magnetic properties of CoFe2O4 nanoparticles synthesized by thermal decomposition of metal-organic precursors in 1-octadecene. Although pseudo-spherical particles having an average size of about 8 nm and similar stoichiometry have been observed in all studied samples, a high level of variability in the crystal quality and, in turn, in the magnetic properties has been found as a function of the amount of 1,2-hexadecanediol added to the reaction mixture. The magnetic study reveals that samples progress from glassy magnetic behavior to bulk-like, ferrimagnetic order as the crystal quality improves. The analysis of the reaction mixtures by Fourier transform infrared spectroscopy at various stages of the reaction shows the key role of the 1,2-hexadecanediol in favoring the decomposition of the metal-organic precursor, formation of an intermediate Co(2+)Fe(3+)-oleate complex and, finally, the nucleation of nanoparticles at lower temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions.

In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(III) and Co(II) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shape...

متن کامل

COMPARATIVE MAGNETIC AND PHOTOCATALYTIC PROPERTIES OF COPRECIPITATED ZINC FERRITE NANOPARTICLES BEFORE AND AFTER CALCINATION

In this work, the effects of co-precipitation temperature and post calcination on the magnetic properties and photocatalytic activities of ZnFe2O4 nanoparticles were investigated. The structure, magnetic and optical properties of zinc ferrite nanoparticles were characterized by X-ray diffraction (XRD), vibrating sample magnetometry and UV–Vis spectrophotometry techniques.  The XRD re...

متن کامل

Photocatalytic dye degradation properties of Zinc Copper Ferrites nanoparticles

In the present study, new multi-components spinel ferrite Zinc doped metallic ferrites are investigated. The synthesized compounds consisting of Zinc copper ferrite nanostructures were developed using the Co-precipitation technique. Powder X-ray diffraction pattern (XRD) confirms the formation of the spinel phase for all the samples. The lattice constant was studied through powder X-ray diffrac...

متن کامل

Magnetic Properties of Cobalt Ferrite synthesized by Hydrothermal and Co-precipitation Methods: A Comparative Study

The magnetic properties of calcined cobalt ferrite formed by nano-crystalline powders have been compared by two different methods (co-precipitation and hydrothermal). The structural properties of the produced powders were investigated by X-ray Diffraction (XRD), scanning electron microscopy (SEM). The results show that the formation of cobalt ferrite spinel structures is effected by changing me...

متن کامل

An Investigation on Synthesis and Magnetic Properties of Manganese Doped Cobalt Ferrite Silica Core-Shell Nanoparticles for Possible Biological Application

In this work, we investigated synthesis, magnetic properties of silica coated metal ferrite, (CoFe2O4)/SiO2 and Manganese doped cobalt ferrite nanoparticles (MnxCo1-xFe2O4 with x= 0.02, 0.04 and 0.06)/SiO2 for possible biomedical application. All the ferrites nanoparticles were prepared by co-precipitation method using FeCl3.6H2O, CoCl2.6H2O and MnCl2.2H2O as precursors, and were silica coated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 19  شماره 

صفحات  -

تاریخ انتشار 2015